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Abstract

1. Predator species are separated along habitat gradients, with predation known to

play an essential role in species’ trait diversification. Because predator species differ

dramatically in their hunting style and mode, a change in predator species will alter

the mean and variance of prey’s antipredator traits. Population trait variation has an

impact on community ecology. It influences species’ niche width and interactions in

the food web. However, empirical studies on variance change by predation are

scarce.

2. In this study, we collected large numbers of the last instar Leucorrhinia pectoralis

exuviae from lakes with predatory fish (fish lakes) and lakes with large invertebrate

predators (dragonfly lakes) and compared their two antipredator traits (spines and

body size).

3. We found that individuals in dragonfly lakes grew shorter spines than individuals in

fish lakes. Body size showed no significant difference between dragonfly-lake indi-

viduals and fish-lake individuals. Moreover, populations from dragonfly lakes

showed a smaller variance of spine length than populations from fish lakes; while

populations from dragonfly lakes had a larger variance in body size than populations

from fish lakes.

4. These results indicate that trait variance, as well as mean, is strongly modified by

different predation regimes. Studying the mean and variance of traits can help to

define the mode of selection forces (directional selection and stabilising selection)

in nature. Moreover, dragonfly larvae might be ideal organisms for the study of phe-

notypic selection on quantitative traits in the wild.

K E YWORD S

dragonfly larvae, mean and variance, phenotypic selection, population diversification, predation
regimes shift

INTRODUCTION

Predators represent a major source of selection shaping prey pheno-

types (Benard, 2004; Vamosi, 2005). As a response prey species have

evolved a large array of traits to avoid and repel predators

(Benard, 2004; Edmunds, 1974; Schmitz, 2017). Because predators

are restricted to different habitats, prey species often segregate along

predator gradients (McPeek, 1990a; Mikolajewski et al., 2006; Stoks &

McPeek, 2003; Swaegers et al., 2017). Key antipredator traits of prey

are expected to influence the outcome of predator–prey interactions,

and thus, these traits determine the occurrence of prey along predator

gradients (McPeek, 1990a; Petrin et al., 2010). Body size, which is
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directly linked to fitness (McArdle & Lawton, 1979), is a classical trait

for studying predator selection on phenotypes because different

predators select for either small prey size (Juanes, 1992; Pickering

et al., 2017) or favour large prey (Black, 1993; Manca et al., 2008).

Besides body size, other morphological defences against predators

have been widely studied, because these defences often have promi-

nent and striking features (Bourdeau & Johansson, 2012). Among the

spines, a typical defensive trait has received much attention because

they protect a large array of prey species against predators (Dahl &

Peckarsky, 2002; Johansson & Mikolajewski, 2008; Murphy

et al., 2010; Vamosi & Schluter, 2004).

Many previous studies have shown that predation can cause mor-

phological divergence in prey population (Benard, 2004; Bourdeau &

Johansson, 2012; Davenport et al., 2014). Predators differ in hunting

and pursuing features, and densities among habitats (Mcpeek, 1990b;

Wellborn et al., 1996). Thus, changes in direction and strength of

selection induced by different predators are the major driver of prey

population divergence (Franks & Oxford, 2017; Herczeg et al., 2009).

Previous work on population divergence has mainly focused on the

changes in trait mean (Violle et al., 2012), with data on changes in trait

variances in response to different predators being scarce (see

Garamszegi & Møller, 2017; Poléo et al., 1995; Runemark

et al., 2014). However, as a prime target of natural selection, differ-

ences in trait variances among populations might indicate incipient

speciation (Gosden et al., 2011; Tregenza et al., 2000), and unveil the

relationship between phenotypic variation and fitness (Nosil &

Crespi, 2006). Thus, combined changes in trait mean and trait variance

can inform us about the evolutionary dynamics of the population.

Freshwater habitats offer a great opportunity to study trait

dynamics in population divergence because habitats typically vary in

the top predator assemblages. Permanent ponds and lakes are

characterised by either the occurrence of predatory fish (hereafter

called fish lakes) or the occurrence of large predatory invertebrates

(hereafter called dragonfly lakes) (Wellborn et al., 1996). Both preda-

tor species differ in prey detection, pursuing and capturing features,

resulting in diversifying selection of prey (Benard, 2004). Thus, selec-

tion by different predation regimes is responsible for the differential

occurrence of prey species along the freshwater habitat gradient (Sih

et al., 1985; Stroud & Losos, 2016), and this selection can also cause

population divergence within prey species (Blumstein & Daniel, 2005;

Dahl & Peckarsky, 2002; Magalhaes et al., 2016).

However, the selection of antipredator traits by predatory fish

and predatory invertebrates can be context-dependent (influenced by

complex factors). Predatory fish select for long abdominal spines

(dragonfly larvae in Johansson & Mikolajewski, 2008, stickleback in

Miller et al., 2017), whereas antagonistic selection by predatory inver-

tebrates results in reduced spine length (Mikolajewski et al., 2006).

Such directional selection could result in different overall means

between fish-lake and dragonfly-lake populations (Bashevkin

et al., 2020; Johansson, 2002). However, patterns in trait variance

might be more complex. Production of defensive spines likely comes

at a significant energetic cost (Flenner et al., 2009; Mikolajewski &

Johansson, 2004). Thus, individuals might be able to save costs by

developing shorter spines but still survive because of habitat complex-

ity via for example, plant cover providing shelter (Henrikson, 1993;

Thomaz & Cunha, 2010). Individuals living in plant cover are also more

likely to face invertebrate predators (Brenda, 1995) which select for

short defensive spines (see above), though invertebrate predators

occur in a very small number of fish lakes (Mcpeek, 1990b). In con-

trast, individuals in dragonfly lakes will develop shorter spines not

only because they can save the energetic costs of spine production,

but also because invertebrate predators select against spines. This

might result in stronger stabilising selection for short spines in

dragonfly-lake populations than for long spines in fish-lake

populations, resulting in a lower variance in dragonfly-lake

populations than in fish-lake populations.

Body size represents a key phenotypic trait affecting most

aspects of an individual and its relationship with other organisms

(Blanckenhorn, 2000; Dmitriew, 2011). Body size is under consider-

able selection by predators (Schmidt & Van Buskirk, 2005; Warren &

Lawton, 1987; Ziemba et al., 2000) and usually scales with growth

rate (Peacor et al., 2007; Peters, 1986; Relyea, 2001). In cases where

predation risk is size-dependent, shifts in the mean body size of preys

among different predation regimes can be expected if predators

favour different prey sizes (Price et al., 2015). Variation in body size

can increase, for example, predator-mediated behavioural changes dif-

fering among predator types, because of scaling effects of growth rate

with body size (Peacor et al., 2007; Uchma�nski, 1985). For instance,

variation in body size is predicted to increase, if larger individuals, that

are safe from predation, will proportionally grow more than smaller

and more vulnerable individuals because size-dependent behaviours

change food availability and subsequently growth rate (Eklöv &

Werner, 2000). In contrast, we can also expect shifts in mean body

size, if predators cause different selective strength on foraging behav-

iour (Ercit, 2016; Reznick, 1982). In this case, body size variation is

predicted to be lower under a stronger reduction in predator-

mediated behavioural changes, because decreased food intake leads

to reduced growth and subsequently decreased individual variations

(Peacor et al., 2007; Ziemba et al., 2000).

Here, we study changes in mean and variance in larval defensive

spines and body size among populations of the dragonfly Leucorrhinia

pectoralis (Charpentier, 1825). Species of the genus Leucorrhinia sepa-

rate strongly between fish lakes and dragonfly lakes (Hovmöller &

Johansson, 2004; Petrin et al., 2010), whereas some species including

L. pectoralis can occur in both fish lakes and dragonfly lakes

(Johansson & Brodin, 2003; Mikolajewski, Scharnweber, et al., 2016;

Petrin et al., 2010). Thereby, intraspecific trait divergence should be

similar to interspecific trait divergence in its magnitude and direction

(Mikolajewski et al., 2010; Mikolajewski, Scharnweber, et al., 2016).

Larval Leucorrhinia in fish lakes develops dominant abdominal spines

that protect them against predatory fish (Mikolajewski & Rolff, 2004;

Johansson & Mikolajewski, 2008), whereas antagonistic selection by

predatory invertebrates results in the reduction of spine length

(Mikolajewski et al., 2006). Based on these patterns, we hypothesise

(i) fish-lake populations possess longer abdominal spines than

dragonfly-lake populations. Furthermore, because of the above-
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T AB L E 1 Sampled populations of Leucorrhinia pectoralis (represented by sampling location) with information of sampling year, predation
regime of each sampling lake (lake type), number of exuviae per year (sample size), and the GPS coordinates

Sampling location Sampling year Lake type Sample size Coordinates

Wetzikon 2012/2013 Dragonfly lake 29/60 47�180N 8�470E

Binsenmoor 2008 Dragonfly lake 22 53�260N 13�470E

Brennbruch 2003/2005/2006 Fish lake 4/18/2 53�230N 13�360E

Bruesenwalde 2004/2013 Dragonfly lake 23/58 53�260N 13�470E

Buckowsee 2005 Fish lake 16 53�000N 13�880E

Dreiecksee 2013 Fish lake 3 53�200N 13�930E

Fl. Cloewensee 2012 Fish lake 84 53�230N 13�510E

Gartenweiher Neuhaus 2001 Fish lake 9 53�080N 13�830E

Gr. Borgsee 2006/2007/2008 Fish lake 2/7/39 53�190N 13�950E

Gr. Krinertsee 2011 Fish lake 11 53�080N 13�730E

Gr. Mehlitzsee 2008 Fish lake 4 53�080N 13�630E

Gr. Barschsee 2002/2004 Fish lake 10/3 53�110N 13�000E

Roetseemoos 2012 Dragonfly lake 19 47�490N 9�530E

Herzfelde Sölle 2009 Dragonfly lake 36 53�200N 13�590E

Kesselmoor 1996/1997 Dragonfly lake 57/81 53�160N 13�910E

Kl. Baberowsee 2002/2011 Fish lake 1/7 53�240N 13�480E

Kl. Griebchen 1998/2003 Fish lake 6/1 53�160N 13�420E

Kl. Maeuschensee 2013 Fish lake 50 53�200N 13�580E

Kl. Toernsee 2002 Fish lake 26 53�100N 13�000E

Suckowsee 2001 Fish lake 86 53�250N 13�590E

Knehdenmoor 2008 Dragonfly lake 6 53�140N 13�540E

Koelpinmoor 2011 Dragonfly lake 48 53�110N 13�690E

Krummer See 2009/2011/2012/2013/2015 Fish lake 13/33/8/27/15 53�160N 13�910E

Laatzer See 2003/2004 Fish lake 4/6 53�130N 13�590E

Lange Wiese 2009/2012 Dragonfly lake 5/14 53�230N 13�420E

Lehst-Niederung 2006 Fish lake 16 53�220N 13�340E

Madlener Moos 2012 Dragonfly lake 19 47�440N 9�430E

Mellenmoor 1998 Dragonfly lake 18 53�190N 13�290E

Mittlerer Pöhl 2001 Dragonfly lake 108 53�290N 13�120E

Poviestsee Moor 2008 Dragonfly lake 6 53�230N 13�510E

Zahrensee Moor 2009 Dragonfly lake 8 53�240N 13�210E

Redernswalde Moor 1990 Dragonfly lake 27 53�040N 13�840E

Warthe Moorkolk 2002/2003/2005/2006 Fish lake 34/7/16/9 53�240N 13�490E

Moosbruch 2004/2005 Dragonfly lake 3/5 53�240N 13�380E

Oberpfuhlmoor 2006/2012 Dragonfly lake 7/9 53�210N 13�330E

Pfingstposse 1998 Dragonfly lake 6 53�000N 13�920E

Poviestsee 2013 Fish lake 89 53�230N 13�510E

Quellmoor 2010 Dragonfly lake 34 53�240N 13�390E

Reichermoos 2012 Dragonfly lake 14 47�460N 9�440 E

Obermooweiler 2012 Dragonfly lake 19 47�390N 9�470E

Steinacher Ried 2012 Dragonfly lake 20 47�550N 9�420E

Steißsee 2000/2007/2013 Fish lake 18/2/11 53�170N 13�510E

Teufelsbruch 2011 Dragonfly lake 47 53�170N 12�920E

Thomsdorf Moor 2012 Dragonfly lake 45 53�260N 13�470E

Torfbruch Densow 2013 Dragonfly lake 54 53�150N 13�390E

Torfstich Schnakenpfuhl 2010/2013 Dragonfly lake 5/14 53�240N 13�370E

Note: Ponds and lakes are characterised by either the occurrence of predatory fish (fish lakes) or the occurrence of large invertebrate predators (dragonfly
lakes).
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described relationship of different costs and benefits in spine length

between fish-lake and dragonfly-lake populations, we hypothesise that

(ii) fish-lake populations will exhibit larger variations in spine length than

dragonfly-lake populations. However, the relationship of body size in

relation to both predation regimes is less well studied. Data from other

species indicate that prey might become safer with increasing body size

regardless of the predator (Mikolajewski & Johansson, 2004; Stoks

et al., 2012). There is also evidence that larval Leucorrhinia from dragon-

fly lakes forage more (Jiang & Mikolajewski, 2018), but that growth

rates do not differ because of compensatory physiological mechanisms

(Jiang et al., 2019). Consequently, we hypothesise (iii) no differences in

mean body size between fish-lake populations and dragonfly-lake

populations. Furthermore, because growth rate and food intake were

similar in experimental trials among larval Leucorrhinia from fish lakes

and dragonfly lakes, we hypothesis (iv) no difference in body size vari-

ance among fish-lake and dragonfly-lake populations.

MATERIALS AND METHOD

Sample collection

We collected exuviae of L. pectoralis from 46 sites (permanent lakes,

ponds, bogs, etc.) across Germany and Switzerland (Table 1). Exuviae

of last instar larvae were collected on emergent vegetation along the

shoreline. Shorelines represent typical odonate emergence habitats.

From 1990 to 2015, exuviae were collected from mid-May to the end

of May which is the main emergence period of L. pectoralis

(Sternberg & Buchwald, 1999). Exuviae were stored under dry condi-

tions and categorised by collection site and year at room temperature;

the sample size for each collection site and year is presented in

Table 1.

Collection sites differed in the occurrence of predators, with

predatory fish either present or absent. The presence of predatory

fish was determined during the sampling period by fishing or based

on the data provided by local fishermen, angling societies, and pro-

vincial environmental authorities. The common species present were

crucian carp (Carassius carassius, Linnaeus, 1758), pike (Esox lucius,

Linnaeus, 1758), perch (Perca fluviatilis, Linnaeus, 1758), common

roach (Rutilus rutilus, Linnaeus, 1758), and common rudd (Scardinius

erythrophthalmus, Linnaeus, 1758). In sites without predatory fish,

common large invertebrate predators were recorded by net sam-

pling. The collecting samples of invertebrate predators included exu-

viae and dead individuals of dragonfly larvae (Aeshnidae), larvae of

the beetle (Dytiscus sp.), and the backswimmer (Notonecta sp.).

Spine length and body size measurements

We took digital photographs of each exuvia from the dorsal, ventral,

and lateral sides using an Olympus digital microscope SZX16

(Hamburg, Germany). We measured 1623 exuviae (926 exuviae from

26 dragonfly lakes and 697 exuviae from 20 fish lakes). The abdominal

spine length and body size were determined from photographs using

the free software ImageJ 1.50 g (National Institutes of Health, USA

2016) (Schneider et al., 2012).

Abdominal spine length

The length of the dorsal posterior spines at the abdominal segments

5–8 and lateral spines at abdominal segments 8 and 9 were measured

from the base to the tip of the spines (Johansson & Samuelsson,

1994). We did not measure dorsal anterior abdominal spines as those

were covered by wing pads and were probably not under selection by

predators (Petrin et al., 2010).

Body size

Head width represents the most common body size surrogate in odo-

nate larvae (Benke, 1970). However, head width cannot be measured in

exuviae because the head capsule is split-open from emergence. There-

fore, we used the length of the pro-, meso-, and meta- femur and tibia

(Falck & Johansson, 2000; Petrin et al., 2010) as surrogates for body

size. Measurements of only the right femur and tibia were used.

Statistical analyses

All analyses were performed using R 4.0.5 (R Core Team, 2021).

Because of the high multicollinearity among the measurements of

abdominal spines and body size, we first performed principal

T AB L E 2 Loadings, eigenvalues and variance explained by each
PC based upon covariance matrix of the first two principal
components (PC1-PC2)

Measurement PC1 (spine length) PC2 (body size)

Dorsal spine 5 0.79 0.13

Dorsal spine 6 0.88 0.09

Dorsal spine 7 0.89 0.09

Dorsal spine 8 0.85 0.11

Lateral spine 8 0.8 0.22

Lateral spine 9 0.82 0.27

Pro-femur 0.16 0.73

Pro-tibia 0.17 0.8

Meso-femur 0.15 0.84

Meso-tibia 0.15 0.86

Meta-femur 0.14 0.85

Meta-tibia 0.19 0.86

Eigenvalue 5.87 2.77

Variance explained 0.36 0.36

Note: Factor loadings in bold indicate variables loading highly on each axis

(loadings >0.70).
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component analyses (PCA, package ‘psych’, [Revelle, 2016]) on the

entire dataset using a covariance matrix to reduce the number of vari-

ables. The PCA extracted two principal components (PC), which

explained 72% of the variance, with body size surrogates loading high

on PC1 (PC Body size, Table 2). PC2 captured the variance from all

abdominal spine measurements (PC Spine, Table 2). The two extracted

principal components were used in subsequent analyses.

To evaluate differences between fish-lake and dragonfly-lake

populations in trait means of abdominal spine length (PC Spine) and

body size (PC Body size), we constructed linear mixed effect models

(packages ‘lme4’, [Bates, 2010]) using predation regimes (fish-lake

vs. dragonfly-lake) as a fixed effect and sampling year, as well as, the

sampling location nested in predation regimes as random effects. We

did not include body size in the model for spine length because they

were not correlated which is also supported by the fact that PC Spine

and PC Body size were orthogonal to each other.

Levene’s tests were conducted to determine the differences in

trait variance of abdominal spine length (PC Spine) and body size

(PC Body size) between dragonfly-lake populations and fish-lake

populations. To determine whether total variance was greater among

fish-lake populations than among dragonfly-lake populations, we

applied Levene’s test across fish-lake and dragonfly-lake populations.

F I GU R E 1 Means � SD of (a) spine length (PC spine) and (b) body size (PC body size) of each sampled dragonfly-lake (circle) and fish-lake
(triangle) population. Fish and dragonfly larvae symbols also indicate different predation regimes for populations. For the sample size, please refer
to Table 1
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To determine whether interpopulation variances had the same pattern

as total variances, we first calculated the mean of PC Spine and PC

body size of each population. Then, we conducted Levene’s test with

those mean estimates to compare the interpopulation variances

across fish-lake and dragonfly-lake populations. To visualise variances

components between fish-lake and dragonfly-lake populations, we

grouped our data into subsets based on predation regimes. Linear

mixed models were constructed with the population as the fixed

effect and sampling time as the random effect to decompose total

variances into between-population and within-population variances.

RESULTS

Trait mean differences between fish-lake and
dragonfly-lake populations

Populations from fish lakes had longer dorsal and lateral abdominal

spines than those from dragonfly lakes (PC Spine: χ2 = 26.75, d.f. = 1,

p < 0.001) (Figures 1a and 2a). There was no significant difference for

body size between fish-lake populations and dragonfly-lake

populations (PC body size: χ2 = 3.21, d.f. = 1, p = 0.07) (Figures 1b

and 2b).

Trait variances differences between fish-lake and
dragonfly-lake populations

1. Total variance: Total variance for spine length was significantly

larger in fish-lake populations than that in dragonfly-lake

populations (PC Spine: F1,1619 = 6.95, p = 0.008; Figure 3a). Total

variance for body size was significantly smaller in fish-lake

populations than that in dragonfly-lake populations (PC body size:

F1,1619 = 14.74, p < 0.001; Figure 3b).

2. Interpopulation variance: Interpopulation variances for spine length

(PC Spine: F1,44 = 0.10, p = 0.757) and body size (PC body size:

F1,44 = 3.40, p = 0.072) did not differ between fish-lake and

dragonfly-lake populations (Figure 3a,b).

DISCUSSION

In this study, we found that L. pectoralis larvae from dragonfly lakes

had shorter spines than those from fish lakes. Moreover, we also

found that the dragonfly-lake populations of L. pectoralis had a smaller

total variance in spine length compared to that of fish-lake

populations. However, they had a larger variance in body size than

F I GU R E 2 Estimated marginal means (�95% confidence intervals) for (a) spine length (PC spine) and (b) body size (PC body size) as well as
frequency distributions of (c) spine length (PC spine) and (d) body size (PC body size) for larvae from fish lakes indicated in red and from dragonfly
lakes indicated in blue. Fish and dragonfly larvae symbols indicate different predation regimes for populations
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that of fish-lake populations. Our results suggested that both means

and variances of antipredator traits and body size were under strong

selection by different predators, causing the population to diverge.

However, the strength and direction of selection were predator-

specific.

In aquatic systems, the long spines of prey provide protection

against gape-limited predatory fish (Bashevkin et al., 2020;

Johansson & Mikolajewski, 2008; Price et al., 2015; Riessen &

Sprules, 1990; Šigutová et al., 2018; Zhang et al., 2017). Here, we

showed that the larvae of L. pectoralis also expressed longer spines in

fish lakes than in dragonfly lakes. Similar interspecific patterns were

observed within the genus Leucorrhinia: larval abdominal spines of

fish-lake species are longer than those of dragonfly-lake species

(reviewed in Johansson & Mikolajewski, 2008). Furthermore,

intraspecifically, two Leucorrhinia species (L. dubia and L. intacta) plas-

tically exhibited long spines in fish lakes but short spines in dragonfly

lakes (Johansson, 2002; McCauley et al., 2008). Thus, predatory fish

impose strong selection for long spines in dragonfly larvae, while

invertebrate predators select against long spines at interspecific and

intraspecific levels. Additionally, we found that spine length had a

higher total variance in fish-lake populations than in dragonfly-lake

populations, and this was entirely driven by a reduction in within-

population variance among dragonfly-lake populations. A reduction in

the variance in dragonfly-lake populations might be due to stabilising

selection (Lahti et al., 2009). Long spines are detrimental to prey in

dragonfly lakes because invertebrate predators can more easily hold

on to long-spined individuals (Mikolajewski et al., 2006). Therefore,

high costs are expected when larvae have long spines in dragonfly

lakes. The spine length in fish-lake populations had a larger variance,

and this result fits our early hypothesis. In fish lakes, a larger variance

in spine length could result from weaker stabilising selection, which

usually leads to a broader fitness peak of traits (Lahti et al., 2009).

Selection pressures on spine length in fish lakes might differ due to

different habitat complexity, size, and density heterogeneity of preda-

tory fish, and so forth. Therefore, by living in habitats with different

levels of selection pressures, L. pectoralis larvae with differences in

the spine length might survive predatory fish.

Although both body size and spines are related to the fitness of

prey, they showed different patterns of diversification under different

predation regimes. The body size of the fish-lake and dragonfly-lake

populations did not differ in L. pectoralis. This is not surprising because

previous studies found that L. pectoralis did not reduce its activity in

response to predatory fish, and thus, they cannot acquire more food

for growth via increasing activity in dragonfly lakes (Mikolajewski,

Conrad, et al., 2016). In fish lakes, food for dragonfly larvae, such as

zooplankton and damselfly larvae, decreases at the species level (taxo-

nomic richness) and the population level (overall biomass) because fish

are upper-level consumers (Gophen, 2017; Laske et al., 2017; Reissig

et al., 2006). Therefore, predatory fish may decrease the food avail-

ability and food competitors for L. pectoralis, simultaneously. Thus, the

food resources for each individual may remain unchanged. Moreover,

in fish lakes L. pectoralis are semivoltine, and in dragonfly lakes, they

are univoltine or semivoltine (Mauersberger & Mikolajewski pers.

observation). Differences in the duration of the larval period may fur-

ther reduce the differences in the mean of the body size of the last

instar larvae, while a longer time spent in the larval stage in fish-lake

populations might also minimise the body size variance of the last

instar larvae.

Unfortunately, we could not determine if differences in trait

means and changes in trait variances between fish-lake and dragonfly-

lake populations were caused by genetic divergence or mediated by

phenotypic plasticity. It has been shown that both factors alter the

trait mean and variance (Colosimo et al., 2004; Robinson et al., 2015;

Runemark et al., 2014). Mikolajewski, Conrad, et al. (2016) showed

F I GU R E 3 Variance decompositions of (a) spine length (PC spine) and (b) body size (PC body size) between larvae from dragonfly lakes and
fish lakes (indicated by drawings). Light grey indicates between-population variances and black indicates within-population variances
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that L. pectoralis larvae lack plastic antipredator behaviour by compar-

ing the absence/presence of predatory fish. However, phenotypic

plasticity in response to predation was shown in L. dubia and L. intacta

for spine length (Johansson & Samuelsson, 1994; McCauley

et al., 2008), and in L. dubia and L. albifrons for behaviour

(Mikolajewski & Johansson, 2004); however, phenotypic plasticity

was absent in L. dubia for body size (Johansson, 2002). These observa-

tions suggest a potential role of phenotypic plasticity in the patterns

that we found. Furthermore, long-distance flight in dragonfly species

like L. dubia (Pajunen, 1962) might lead to weak genetic differentiation

among populations (Johansson, Halvarsson, Mikolajewski, &

Hoglund, 2017). However, variation in the spine length was found in

several Leucorrhinia species by comparing fish-lake and dragonfly-lake

populations (Petrin et al., 2010). Additionally, recent common garden

experiments excluding phenotypic plasticity revealed apparent genetic

divergence among Palearctic populations in the spine length of

L. dubia (Johansson, Halvarsson, Mikolajewski, & Höglund, 2017).

Thus, common garden experiments are necessary to disentangle the

effects of phenotypic plasticity and genetic differentiation on the

changes in the mean and variance of the defensive spine length and

the body size across fish-lake and dragonfly-lake populations.

Interpopulation variance for spine length or body size did not dif-

fer significantly between fish-lake and dragonfly-lake populations.

This indicated that in fish and dragonfly lakes, the strength and direc-

tion of selection are comparable across populations. This is surprising

because different fish and dragonfly lakes differ in chemical factors,

size, vegetation, and so forth. For instance, water chemistry and pred-

ator composition are quite different across lakes (Mcpeek, 1990b);

Sphagnum mosses provide hiding spots for L. dubia to avoid fish pred-

ators, and thus, these mosses can alter the microhabitat for dragonfly

larvae in different lakes (Henrikson, 1993). However, predation is a

major selective force driving the occurrence of dragonfly larvae, while

other abiotic factors have relatively little impact on the occurrence of

dragonfly larvae (Johansson & Brodin, 2003; Mcpeek, 1990b). There-

fore, predation pressures may overwhelmingly dominate the selection

pressure on the population differentiation of dragonfly larvae.

Studies on the phenotypic selection of quantitative traits in the

wild are urgently needed (Kingsolver & Diamond, 2011). The special

life history of the dragonfly species, such as strong dispersal ability in

adults and isolation of larvae in lakes, could provide an opportunity to

disentangle phenotypic selection mechanisms (Bybee et al., 2016). In

this study, we found that L. pectoralis larvae from dragonfly-lake

populations had shorter spines than the larvae from fish-lake

populations. The selection pressure imposed by invertebrate preda-

tors also reduced the variance of the spines in L. pectoralis in contrast

to the selection pressure imposed by predatory fish. These results

highlighted that intraspecific divergence could be as strong as inter-

specific divergence (interspecific divergence in spines shown in

[Hovmöller & Johansson, 2004, Johansson & Mikolajewski, 2008]).

The changes in the mean and variance of the length of antipredator

spines suggested directional and stabilising selection in the

Leucorrhinia-predator system (Kingsolver et al., 2012; Lande &

Arnold, 1983). Furthermore, by systematically investigating two

antipredator traits, we found that different antipredator traits may

respond differently to various predation systems. Selection pressures

on prey traits by top predators can be influenced by complex factors.
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